Search results for " stars"
showing 10 items of 344 documents
GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences
2018
The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…
Reproductive strategy as a piece of the biogeographic puzzle: a case study using Antarctic sea stars (Echinodermata, Asteroidea)
2017
13 pages; International audience; AimTo describe and analyse asteroid biogeographic patterns in the Southern Ocean (SO) and test whether reproductive strategy (brooder versus broadcaster) can explain distribution patterns at the scale of the entire class. We hypothesize that brooding and broadcasting species display different biogeographic patterns.LocationSouthern Ocean, south of 45 °S.MethodsOver 14,000 asteroid occurrences are analysed using bootstrapped spanning network (BSN), non-metrical multidimensional scaling (nMDS) and clustering to uncover the spatial structure of faunal similarities among 25 bioregions.ResultsMain biogeographic patterns are congruent with previous works based on…
Towards modelling the central engine of short GRBs
2011
Numerical relativity simulations of non-vacuum spacetimes have reached a status where a complete description of the inspiral, merger and post-merger stages of the late evolution of close binary neutron systems is possible. Determining the properties of the black-hole-torus system produced in such an event is a key aspect to understand the central engine of short-hard gamma-ray bursts (sGRBs). Of the many properties characterizing the torus, the total rest-mass is the most important one, since it is the torus' binding energy which can be tapped to extract the large amount of energy necessary to power the sGRB emission. In addition, the rest-mass density and angular momentum distribution in t…
PLANETS AROUND LOW-MASS STARS AND STELLAR ACTIVITY EFFECTS
In the last years the field of exoplanet research has focused its interest in M dwarfs. These stars have became the favourite targets in radial velocity surveys, specially when looking for small planets in the habitable zones of their parent stars. Not only for being the M dwarfs the most common objects in our Galaxy also because the Doppler signals due to small planets orbiting around them are larger and more easily detectable than those around FGK stars. However, stellar magnetic activity and rotation affect the measured radial velocities as surface inhomogeneities rotating with the stellar surface can cause periodic changes in the spectral line centroid. Disentangle these stellar activit…
On X-ray Optical Depth in the Coronae of Active Stars
2007
We have investigated the optical thickness of the coronal plasma through the analysis of high-resolution X-ray spectra of a large sample of active stars observed with the High Energy Transmission Grating Spectrometer on Chandra. In particular, we probed for the presence of significant resonant scattering in the strong Lyman series lines arising from hydrogen-like oxygen and neon ions. The active RS CVn-type binaries II Peg and IM Peg and the single M dwarf EV Lac show significant optical depth. For these active coronae, the Lya/Lyb ratios are significantly depleted as compared with theoretical predictions and with the same ratios observed in similar active stars. Interpreting these decremen…
QPO emission from moving hot spots on the surface of neutron stars: a model
2009
We present recent results of 3D magnetohydrodynamic simulations of neutron stars with small misalignment angles, as regards the features in lightcurves produced by regular movements of the hot spots during accretion onto the star. In particular, we show that the variation of position of the hot spot created by the infalling matter, as observed in 3D simulations, can produce high frequency Quasi Periodic Oscillations with frequencies associated with the inner zone of the disk. Previously reported simulations showed that the usual assumption of a fixed hot spot near the polar region is valid only for misalignment angles relatively large. Otherwise, two phenomena challenge the assumption: one …
Coronal properties of active G-type stars in different evolutionary phases
2005
We report on the analysis of XMM-Newton observations of three G-type stars in very different evolutionary phases: the "weak-line" T Tauri star HD 283572, the Zero Age Main Sequence star EK Dra and the Hertzsprung-gap giant star 31 Corn. The X-ray luminosities of the three stars are all in the range 10(30) - 10(31) erg/s. We compare the Emission Measure Distributions of these bright sources, derived from high-resolution X-ray spectra, as well as the pattern of elemental abundances vs. First Ionization Potential (FIP). The results of our analysis suggest that the coronae of these stars are very similar in terms of dominant coronal magnetic structures, in spite of differences in their evolutio…
Accretion Shocks in Young Stars: the Role of Local Absorption on the X-ray Emission
2015
We investigate the X-ray emission from accretion shocks in classical T Tauri stars, due to the infalling material impacting the stellar surface. Several aspects in both observations and models of the accretion process are still unclear: the observed X-ray luminosity of the post-shock plasma is below the predicted value, the density vs temperature structure of the shocked plasma, with increasing densities at higher temperature, is opposite of what expected from simple accretion shock models. To address these issues we performed numerical magnetohydrodynamic simulations describing the impact of an accretion stream onto the stellar surface and considered the local absorption due to the surroun…
Study of the accretion torque during the 2014 outburst of the X-ray pulsar GRO J1744−28
2017
We present the spectral and timing analysis of the X-ray pulsar GRO J1744-28 during its 2014 outburst using data collected with the X-ray satellites Swift, INTEGRAL, Chandra, and XMM-Newton. We derived, by phase-connected timing analysis of the observed pulses, an updated set of the source ephemeris. We were also able to investigate the spin-up of the X-ray pulsar as a consequence of the accretion torque during the outburst. Relating the spin-up rate and the mass accretion rate as $\dot{\nu}\propto\dot{M}^{\beta}$, we fitted the pulse phase delays obtaining a value of $\beta=0.96(3)$. Combining the results from the source spin-up frequency derivative and the flux estimation, we constrained …
AE Aurigae: First detection of non-thermal X-ray emission from a bow shock produced by a runaway star
2012
Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace due to the encounter of two massive binary systems and now is passing through the dense nebula IC 405…